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Abstract. The partition function of the Baxter–Wu model is exactly related to the generating
function of a site-colouring problem on a hexagonal lattice. We extend the original Bethe
ansatz solution of these models in order to obtain the eigenspectra of their transfer matrices
in finite geometries and general toroidal boundary conditions. The operator content of these
models is studied by solving numerically the Bethe-ansatz equations and by exploring conformal
invariance. Since the eigenspectra are calculated for large lattices, the corrections to finite-size
scaling are also calculated.

1. Introduction

The Baxter–Wu model is defined on a triangular lattice by the Hamiltonian

H = −J
∑
〈ijk〉

σiσjσk (1)

where the sum extends over the elementary triangles andσi = ±1 are Ising variables located
at the sites. This model is self-dual [1] with the same critical temperature as that of the Ising
model on a square lattice, and was solved exactly in its thermodynamic limit by Baxter and
Wu [2]. Its leading exponents [2],α = 2/3, µ = 2/3 andη = 1/4, are the same as those of
the four-state Potts model [3–5]. Due to this and the fact that both models have a fourfold
degenerate ground state, it was conjectured that they share the same universality class of
critical behaviour. However, from numerical studies of these models on a finite lattice it
is well known that both models show different corrections to finite-size scaling. Whereas
in the Potts models [6–9] these corrections are governed by a marginal operator, producing
logarithmic corrections with the system size, this is not the case in the Baxter–Wu model
[10, 11]. This raises the question of knowing which operator governs these corrections in
the Baxter–Wu model.

With the developments of conformal invariance applied to critical phenomena [12], two
models are considered in the same universality class of critical behaviour only if they have
the same operator content, not only the leading critical exponents. The operator content of
the four-state Potts model was already conjectured from finite-size studies in its Hamiltonian
formulation [13], and can be obtained by aZ(2) orbifold of the Gaussian model (see [14]
for a review).

In this letter, by exploiting the conformal invariance at the critical point, we report
on our calculation of the operator content of the Baxter–Wu model. In order to do this
calculation we have to generalize the original Bethe ansatz solution of the model, since this
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Figure 1. The Baxter–Wu model is defined on the triangular lattice formed by the points◦,
♦ andM. The site-colouring problem (SCP) is defined on the hexagonal lattice formed by the
pointsM and♦, connected by continuous lines.

solution does not give the complete eigenspectrum of the associated transfer matrixT . The
conformal anomalyc and anomalous dimensions(x1, x2, . . .) are obtained in a standard way
from the finite-size behaviour of the eigenspectra of the associated transfer matrix, at the
critical temperature. If we writeT = exp(−Ĥ ), then in a strip of widthL with periodic
boundary conditions the ground-state energy,E0(L), of Ĥ behaves for largeL as [15]

E0(L)

L
= ε∞ − πcvs

6L2
+ o(L−2) (2)

whereε∞ is the ground-state energy, per site, in the bulk limit. Moreover, for each operator
Oα with dimensionxα there exists a tower of states in the spectrum ofĤ with eigenenergies
given by [12, 16]

Eαm,m′(L) = E0+ 2πvs

L
(xα +m+m′)+ o(L−1) (3)

wherem,m′ = 0, 1, 2, . . . . The factorvs appearing in (2) and (3) is the sound velocity and
has unit value for isotropic square lattices. The higher eigenvalues ofT can be calculated
directly by numerical diagonalization. However, sinceT is not sparse and has dimension 2L,
for a horizontal widthL, we cannot compute its eigenspectra by numerical diagonalization
methods forL > L0 ∼ 26. Instead of a direct calculation we relate this problem to a
site-colouring problem(SCP) on a hexagonal lattice, which can be solved by the Bethe
ansatz. Following [2] the partition function,ZBW

L×N , of the Baxter–Wu model on a periodic
triangular lattice withL(N) rows (columns) in the horizontal (vertical) direction is related
to the partition function, or generating function,ZSCP

M×N , of a SCP on a hexagonal lattice with
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M = 2L/3(N) rows (columns) in the horizontal (vertical) direction. In the limitN →∞,

ZBW
L×N = ZSCP

M×N. (4)

In figure 1 the Baxter–Wu model is defined on the triangular lattice formed by connecting
the points◦, ♦ andM. The related SCP is defined on the hexagonal lattice formed by the
pointsM and♦, connected by continuous lines. The configurations in the SCP are defined
by attaching at the points of the hexagonal lattice(i, j) (i = 1, . . . ,M; j = 1, . . . , N) site-
colour variablesci,j = 1, 2, . . . ,8, satisfying the constraint that any two nearest-neighbour
colours must differ by 1 or−1. The partition functionZSCP given in (4) is obtained by
adding all the colour configurations with weights given by the product of the fugacities
zj (j = 1, 2, . . . ,8) of each colour in the lattice configuration. These fugacities are given
by

z1 = z3 = z5 = z7 = 2 sinh(4βJ )

z−1
2 = z4 = z−1

6 = z8 = sinh(2βJ ) ≡ t. (5)

The critical point of the Baxter–Wu model and of the SCP is given by the self-dual point
t = tc = 1. If we write T = exp(−Ĥ ) for both models and sinceZ = Tr(T N), the
relation (4) implies

Tr(e−NH
BW
L ) = Tr(e−NH

SCP
M ). (6)

It is important to observe that althoughHBW
L andHSCP

M have the same dimension 2L they
may have different eigenvalues.

In the SCP we say we have a dislocation [2] in a given link wherever the colour
in its right end is smaller than the left one. The numbern of dislocations in a given
row is a conserved quantity. Consequently, the Hilbert space associated toT SCP or
HSCP is separated into block disjoint sectors labelled by the values ofn. For a periodic
hexagonal lattice of widthM (even) the possible values ofn are even and given by
M,M ± 4,M ± 8, . . . ,M ± 4 int(M/4). Due to (6) the SCP also has an additionalZ(2)
symmetry (eigenvaluesε = ±1), since adding 4 (modulo 8) to all colours in a given
configuration does not change its weight in the partition function. The Bethe ansatz solution
presented by Baxter and Wu [2] only gives part of the eigenspectrum ofHSCP, since they
considered only eigenstates which are even under this symmetry. We generalized [17] their
solution in order to obtain the missing odd eigenvectors. For the sake of brevity we only
present here the Bethe ansatz equations. The eigenvaluesE

(sj )
n of HSCP in the sector with

n dislocations are given by

E{si }n = −
M

4
ln(16t2(1+ t2))−

n∑
j=1

(e
(sj )

j − ik(sj )j ) (7)

where

e
(sj )

j = 1/2 ln(xj + sj
√
x2
j − 1) xj = cos(2k

(sj )

j )+ t + 1/t (8)

with 1 = s1 = s2 = · · · = sn−l = −sn−l+1 = · · · = −sn, and l = 0, 1, . . . , n fixed. The
quasimomenta{k(sj )j } are obtained by solving the equations

exp(iMk
(sj )

j ) = −√ε
n∏

p=1

(
cosh(e

(sj )

j + ik
(sp)
p )

cosh(e
(sp)
p + ik

(sj )

j )

)
j = 1, 2, . . . , n (9)

where ε = ±1. The valueε = 1 gives the part of the eigenspectrum which is even
under theZ(2) symmetry and was derived in [2], whileε = −1 gives the odd part of the
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eigenspectrum. Strictly speaking this is a conjecture since the completeness of the Bethe
ansatz solutions is always a difficult question.

Numerically we have studied these equations extensively at the critical pointt = tc = 1,
for general values ofn, ε and l and for lattice sizes up toM ∼ 200. For example, in the
eigensector wheren = M, by settingl = 0 we obtain the energies of the ground state and
first excited state by choosingε = 1 andε = −1, respectively.

Table 1. Conformal anomaly estimatorscM , as a function ofM, for the SCP and Baxter–Wu
model.

M cM

6 0.996 590 995
10 0.998 910 268
50 0.999 959 561

100 0.999 989 915
150 0.999 995 519
200 0.999 997 480

Let us calculate the conformal anomaly by using (2). The bulk energyεSCP
∞ = − 3

4 ln 6
can be obtained from the solution in the bulk limit [2] and the sound velocityvs =

√
3/3, can

be inferred from (3) and an overall analysis of the dimensions appearing in the model. Using
these values in (2) we obtain the finite-size sequence estimatorsc(M) for the conformal
anomaly, presented in table 1. As expected the conformal anomaly isc = 1, as for the
four-state Potts model. The relation (6) does not imply that in a finite lattice the eigenergies
of HBW

L and HSCP
M are the same. In fact this is the case. Fortunately by comparing

their eigenspectra by direct calculations on small lattices we verify that many of the lower
energies, including the ground-state energy, are exactly the same. Consequently by using
the bulk limit value [2] εBW

∞ = − 1
2 ln 6 we obtain the same sequence shown in table 1.

The sound velocity which comes from our analysis is nowvs =
√

3/2 and the conformal
anomaly has the expected valuec = 1.

Table 2. Scaling dimensions estimatorsxεj (M − n, l), as a function of the lattice sizeM, for
some eigenenergies. These energies are thej th lowest energy obtained by solving (7)–(9) with
valuesn, ε and l.

M x−1 (0, 0) x−2 (1, 0) x+3 (0, 1) x+2 (2, 0) x+4 (0, 1)

6 0.125 028 03 0.248 967 41 0.506 262 26 0.626 135 04 0.986 483 57
10 0.125 017 02 0.249 597 71 0.502 153 17 0.625 483 22 0.996 989 67
50 0.125 000 83 0.249 983 23 0.500 084 06 0.625 020 93 0.999 921 01

100 0.125 000 21 0.249 995 80 0.500 020 99 0.625 005 24 0.999 980 57
150 0.125 000 09 0.249 998 13 0.500 009 33 0.625 002 33 0.999 991 39
200 0.125 000 05 0.249 998 95 0.500 005 25 0.625 001 31 0.999 995 16

The large-L behaviour of the energies of excited states will give the operator content of
the models. Using (3), the finite-size sequences obtained for some dimensions associated
to HSCP are shown in table 2. The estimatorsxεj (M − n, l) are thej th lowest eigenenergy
obtained by solving (7)–(9) with the valuesn, ε andl. As a result of an extensive calculation
of the eigenspectra ofHSCP, obtained by direct diagonalization on small lattices and
by solving (7)–(9) for large lattices, we arrive at the following conjecture. Namely the
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dimensions of primary operators in a given sector labelled byn = M + 4p are given by

xp,q = 1
2(4p

2+ 1
4q

2) q = 0,±1,±2, . . . (10)

where p = 0,±1,±2, . . . for the periodic lattice. The number of descendants, with
dimensionsxp,q + m + m′ (m,m′ ∈ Z) is given by the product of two independent
Kac–Moody characters. The dimensions (10) are similar, in a Gaussian model [18] with
compactification radius equal to 2, to the dimensions of an operator with vorticityp and
spin-wave numberq. The Gaussian model at this radius corresponds to the continuum limit
Kosterlitz–Thouless point of the X–Y model in the torus [14, 19]. This implies that the
SCP belongs to the same universality class as the Kosterlitz–Thouless phase transition of
the X–Y model.

We have also studied the SCP with more general toroidal boundary conditions which
preserves the same symmetries as the periodic case (n andε are good quantum numbers).
Those boundary conditions are obtained by imposing to each row(j = 1, 2, . . .) of a
colour configuration in the SCP the constraintcM+1,j = c1,j + k, wherek = 0, 2, 4 or 6.
The periodic case is obtained whenk = 0. The possible values ofn are now given by
n = M + 4p wherep = j − 1

8k (j = 0,±1,±2, . . .). In this casek = 2 andk = 6 we
were not able to apply the Bethe ansatz for arbitrary temperatures, but only at the critical
temperaturet = tc = 1 [17]. The Bethe ansatz equations turn out to be the same as in
(7)–(9) but now the values ofn depend on the boundary condition. If in (2) we take
E0(M) as the ground-state energy of the periodic lattice (k = 0) our numerical solutions of
equations (7)–(9) also give the dimensions (10) but withp = j − 1

8k (j = 0,±1,±2, . . .).
Let us return to the Baxter–Wu model. In this case by comparing the eigenspectra of

HBW andHSCP, obtained by a direct diagonalization on small lattices, we verify that many
of the dimensionsxp,q appearing in (10) are absent. For example, the energies producing
the estimators in the second and eighth columns of table 2 only appear inHSCP. Following,
for large lattices, the energies which are exactly related in both models, we verified that
the lower dimensions in the Baxter–Wu model are given byx = 0, 1

8,
1
2,

9
8, . . . , and appear

with degeneracydx = 1, 3, 1, 9, . . . , respectively. These results, supplemented with the
global eigenspectrum calculated for small systems, indicate that the operator content of the
Baxter–Wu model is the same as that of the four-state Potts model [13] and is given in
terms of aZ(2) orbifold [14] of the Gaussian model. It is interesting to note that, whereas
in the SCP the operator content is given in terms of characters of the Kac–Moody, algebra
in the Baxter–Wu model the characters are those of the Virasoro algebra. Since the exact
integrable SCP and the Baxter–Wu model belong to different universality classes some care
has to be taken when we import exact results from the SCP to the Baxter–Wu model.

We also studied the Baxter–Wu model with more general toroidal boundary conditions
which preserve itsZ(2)⊗ Z(2) symmetry. We observe numerically that the eigenenergies
which appear in this case can also be obtained from the eigenspectrum of the SCP with the
toroidal boundary conditions we considered (k = 0, 2, 4, 6). Calculating the corresponding
dimensions for large lattices we obtain the same dimensions reported in [13] for the four-
state Potts model. These results imply that both models are indeed in the same universality
class, being governed at the critical point and arbitrary toroidal geometry by the same
conformal field theory.

Since we calculate eigenenergies ofHBW and HSCP for large lattices we can now
also calculate the corrections to finite-size scaling for both models. Consider the lowest
eigenenergyEα, associated to an operator with dimensionxα. From (3) the correction
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Table 3. Estimators of the exponentxγ in (12) of the dominant correction of some eigenenergies
Eα with dimensionxα .

M xα = 0 xα = 0.125 xα = 0.25 xα = 0.5 xα = 0.625

20 4.083 6238 4.767 2008 3.953 517 4.027 4781 3.906 3776
50 4.046 6061 4.874 3240 3.990 329 4.057 6819 3.981 6761

100 4.003 5431 4.991 7793 3.998 189 4.001 0866 3.996 5769
150 4.001 2060 4.997 7042 3.999 406 4.000 3372 3.998 9165
200 4.000 5332 4.999 1458 3.999 680 4.000 1660 3.999 4630

Rα(M) associated to this level is given by

Eα = Me∞ + 2πvs

M

(
xα − c

12
+ Rα(M)

)
. (11)

According to conformal invariance [8, 12]Rα should behave as

Rα(M) =
∑
γ

aγ

Mxγ−2 +
∑
γ,γ ′

aγγ ′

Mxγ+xγ ′−4 (12)

where{xγ } are the non-relevant dimensions(xγ > 2) associated to the operators governing
the finite-size corrections. In the four-state Potts model the lowest dimensionxγ in this
set is associated to a marginal operator(xγ = 2), and the corrections have a logarithmic
behaviour with the system size. In table 3 we show our estimators for the dimensionxγ of
the dominant correction for some eigenergiesEα, with corresponding dimensionxα, in the
SCP and the Baxter–Wu model. In all these cases we clearly see thatxγ = 4, indicating that
the corrections are integer powers. Rather than the four-state Potts model these corrections
are like those of the Ising model. This explains why the finite-size studies of the Baxter–Wu
model have good convergence, in contrast with the four-state Potts model.

These results show that although the four-state Potts model and the Baxter–Wu
model share the same universality class of critical behaviour, having the same operator
content, the finite-size effects correspond to different perturbations of the fixed point of the
renormalization group. The SCP belongs to another universality class. This implies that
not all exact results derived from the SCP should be translated to the Baxter–Wu model.
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by Conselho Nacional de Desenvolvimento Cientı́fico-CNPq-Brazil, and by Funda¸cão de
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[15] Blöte H, Cardy J L and Nightingale M 1986Phys. Rev. Lett.56 742

Affleck I 1986 Phys. Rev. Lett.56 746
[16] Cardy J L 1986Nucl. Phys.B 270 186
[17] Alcaraz F C and Xavier J C 1997 to be published
[18] Kadanoff L P and Brown A C 1979Ann. Phys., NY121 318
[19] Kadanoff L P 1979Ann. Phys., NY120 39


